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HYDRODYNAMIC RESISTANCE OF A SPHEROIDAL PARTICLE

WITH UNIFORM INTERNAL HEAT RELEASE

UDC 533.72N. V. Malai,1 E. R. Shchukin,2 and Yu. I. Yalamov2

The Stokes approximation is used to describe the stationary motion of a heated hydrosol spheroidal
particle in a viscous incompressible liquid in which internal, uniformly distributed heat sources (sinks)
of constant capacity act. It was assumed that the average particle surface temperature could differ
significantly from the temperature of the ambient liquid. An analytical expression for the hydrody-
namic force acting on the uniformly heated spheroidal particle was obtained by solving hydrodynamic
equations with the temperature dependence of the viscosity represented as an exponential power series.

1. Formulation of the Problem. The motion of heated particles in viscous liquids and gases was
considered in [1–5]. By a heated particle we understand a particle whose average surface temperature far exceeds
the ambient temperature. Heating of the particle surface can be caused by a bulk chemical reaction, radioactive
decay of the particle, etc.

The heated surface of the spheroid can significantly affect the thermal-physics properties of the ambient
medium and, therefore, the velocity and pressure distributions in the vicinity of the particle.

At present the motion of rigid spheroidal particles under a small relative temperature gradient in their
vicinity has been studied in considerable detail [6–8].

In the present paper, an analytical expression for the hydrodynamic force acting on a heated spheroidal
particle is obtained in the Stokes approximation, allowing for the temperature dependence of viscosity represented
as an exponential power series under arbitrary temperature gradients between the particle surface and distant areas.

We consider the motion of a hydrosol rigid particle shaped as an oblate spheroid in a viscous incompressible
liquid in which constant-capacity heat sources (sinks) are uniformly distributed. The Reynolds numbers are small.
The particle moves along the axis of symmetry under the action of a certain force, say, an electromagnetic force. If
we convert to a coordinate system attached to the particle, the problem reduces to that of a plane-parallel liquid
flow with velocity U∞ (U∞ ‖ Oz) past a heated motionless oblate (prolate) spheroid.

The density, thermal conductivity, and heat capacity of the liquid and the particle are assumed to be constant,
and the thermal conductivity exceeds the thermal conductivity of the ambient liquid.

Among all liquid transport parameters, only dynamic viscosity depends strongly on temperature [9]. The
temperature dependence of the viscosity is written as

µliq = µ∞

[
1 +

∞∑
n=1

Fn

(Tliq

T∞
− 1
)n]

exp
(
−A

(Tliq

T∞
− 1
))
, (1.1)

where A = const, µ∞ = µliq(T∞), and T∞ is the liquid temperature at a distance from the particle. Hereinafter the
subscripts “liq” and “p” stand for the ambient liquid and the particle. For Fn = 0, formula (1.1) can be reduced to
the Reynolds relation (ratio) [9].

As is known, liquid viscosity decreases exponentially as temperature rises [9]. An analysis of semi-empirical
formulas available in the literature shows that expression (1.1) provides for the most adequate description of viscosity
variation over a wide temperature range. Thus, for water over the temperature range of 0–90◦C, the parameter
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values in Eq. (1.1) are as follows: A = 5.779, F1 = −2.318, and F2 = 9.118 at T∞ = 273 K (the relative error does
not exceed 3%).

The flow past the spheroid is described in a spherical coordinate system (ε, η, ϕ) whose origin is at the center
of the hydrosol particle. The curvilinear coordinates ε, η, and ϕ are linked to the Cartesian coordinates by the
following relations [10]:

— for the case of a prolate spheroid (a0 < b0),

x = c sinh ε sin η cosϕ, y = c sinh ε sin η sinϕ, z = c cosh ε cos η, c =
√
b20 − a2

0; (1.2)

— for the case of an oblate spheroid (a0 > b0),

x = c cosh ε sin η cosϕ, y = c cosh ε sin η sinϕ, z = c sinh ε cos η, c =
√
a2

0 − b20. (1.3)

Here a0 and b0 are the semiaxes of the spheroid. In the Cartesian system of coordinates, the z axis coincides with
the axis of symmetry of the spheroid.

For small Reynolds and Peclet numbers, the distributions of the velocity U liq, pressure Pliq, and tempera-
ture Tliq are described by the system of equations for lower gravity [10]:

∇Pliq = µliq∆U liq + 2(∇µliq∇)U liq + [∇µliq × rotU liq], divU liq = 0, (1.4)

∆Tliq = 0, ∆Tp = −qp/λp. (1.5)

The boundary conditions for system (1.4), (1.5) have the following form:

ε = ε0, U liq = 0, Tliq = Tp, λliq
∂Tliq

∂ε
= λp

∂Tp
∂ε

, (1.6)

ε→∞, U liq → U∞eε cos η − U∞eη sin η, Tliq → T∞, Pliq → P∞, (1.7)

ε→ 0, Tp 6=∞. (1.8)

Here qp is the constant capacity of the heat sources (sinks) per unit volume of the particle, eε and eη are unit
vectors of the spherical coordinate system, λ is the thermal conductivity, and U∞ = |U∞|.

Boundary conditions (1.6) correspond to the slip condition for the velocity, temperature equality, and heat
flux continuity on the particle surface. The coordinate surface with the value of ε = ε0 corresponds to the particle
surface. At a large distance from the particle (ε → ∞), boundary conditions (1.7) hold, and the finiteness of the
physical quantities characterizing the particle at ε→ 0 is allowed for in (1.8).

The force acting on the particle from the flow is given by the formula

Fz =
∫
S

(
− Pliq cos η + σεε cos η − sinh ε

cosh ε
σεη sin η

)
dS, (1.9)

where dS = c2 cosh 2 ε sin η dη dϕ is a differential element of the surface and σεε and σεη are stress tensor components
in spherical coordinates [11].

Using boundary condition (1.7), we seek expressions of the normal (Uε) and tangential (Uη) components of
the mass velocity U liq in the form

Uε(ε, η) =
U∞

cHε cosh ε
G(ε) cos η, Uη(ε, η) = −U∞

cHε
g(ε) sin η, (1.10)

where G(ε) and g(ε) are arbitrary functions of the normal coordinate ε and Hε is the Lamés coefficient in spherical
coordinates [10].

2. Velocity Field and Temperature Distribution. Obtaining the Resistance Force. To find the
force acting from the liquid on the solid heated spheroidal particle, we need to know the distributions of temperature,
mass velocity, and pressure in the vicinity of the particle. Integrating Eqs. (1.5) with the corresponding boundary
conditions, we obtain

tliq = 1 + (γ/c) arccot λ, (2.1)

tp = B +
λliq

λp

γ

c
arccot λ+

λ∫
λ0

arccot λ
c

f dλ− arccot λ
c

λ∫
λ0

f dλ.
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Here λ = sinh ε, t = T/T∞, γ = ts − 1 is a dimensionless parameter that characterizes the particle surface
heating, ts = Ts/T∞, Ts is the average surface temperature of the heated spheroid defined by the formula Ts/T∞

= 1 + a0b0qp/(3λliqT∞), B = 1 + (1 − λliq/λp)γ
√

1 + λ2
0 arccot λ0, λ0 = sinh ε0, f = − c2

2λpT∞

+1∫
−1

qp(λ2 + x2) dx,

and x = cos η.
By virtue of (2.1), formula (1.1) becomes

µliq = µ∞

[
1 +

∞∑
n=1

Fn

(γ
c

arccot λ
)n]

exp (−γ0 arccot λ)
(
γ0 =

Aγ

c

)
.

Because the viscosity depends only on the radial coordinate λ, the system of hydrodynamic equations (1.4)
is solved by the method of separation of variables taking into account (1.10). Specifically, for the mass velocity
components U liq, we obtained the following expressions subject to the boundary conditions at infinity (1.7):

Uε(ε, η) =
U∞
cHε

[c2 +A1G1 +A2G2] cos η, Uη(ε, η) = −U∞
cHε

[c2 +A1G3 +A2G4] sin η, (2.2)

where

G1 = − 1
λ3

∞∑
n=0

θ
(1)
n

(n+ 3)λn
, G2 = − 1

λ

∞∑
n=0

θ
(2)
n

(n+ 1)λn
− β

λ3
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n=0

θ
(1)
n

(n+ 3)λn
[
(n+ 3) ln

λ0

λ
− 1
]
,

G3 = G1 +
1 + λ2

2λ
GI

1, G4 = G2 +
1 + λ2

2λ
GI

2,

θ(1)
n = − 1

n(n+ 5)

n∑
k=1

[(n+ 4− k){(n+ 1− k)α(1)
k + α

(2)
k }+ α

(3)
k ]θ(1)

n−k (n > 1),

θ(2)
n = − 1

(n− 2)(n+ 3)

[ n∑
k=1

{(n+ 2− k)[(n+ 1− k)α(1)
k + α

(2)
k ] + α

(3)
k }θ

(2)
n−k

+ β
n∑
k=0

[(2n− 2k + 3)α(1)
k + α

(1)
k ]θ(1)

n−k−2 − 6α(4)
n

]
(n > 3),

Hε = c

√
cosh 2 ε− sin2 η,

θ
(2)
1 = −[2(α(1)

1 + α
(2)
1 ) + α

(3)
1 + 6α(4)

1 ]/4, θ
(2)
2 = 1, θ

(1)
0 = −1, θ

(2)
0 = −1,

β = −[{3(2α(1)
1 + α

(2)
1 ) + α

(3)
1 }θ

(2)
1 − 2(α(1)

2 + α
(2)
2 )− α(3)

2 − 6α(4)
2 ]/5,

α(1)
n = Cn + 12

n2∑
k=0

(−1)k
Cn−2k−2

(2k + 1)(2k + 3)(2k + 5)
, α(4)

n = ∆n, ∆0 = 1, ∆1 = γ,

α(2)
n = (n− 2)Cn − γ0Cn−1 + 12

n2∑
k=0

(−1)k
(4k + 5)Cn−2k−2

(2k + 1)(2k + 3)(2k + 5)

− 3
n3∑
k=0

(−1)k
1

(2k + 3)(2k + 5)
[(n− 2k − 2)Cn−2k−2 − γ0Cn−2k−3 + (n− 2k − 4)Cn−2k−4] (n > 1),

α(3)
n = −2(n+ 2)Cn + 2γ0Cn−1 − 2(n− 2)Cn−2 + 12

n2∑
k=0

(−1)k
Cn−2k−2

2k + 5

+ 6
n3∑
k=0

(−1)k
(k + 2)(4k + 5)
(2k + 3)(2k + 5)

[(n− 2k − 2)Cn−2k−2 − γ0Cn−2k−3 + (n− 2k − 4)Cn−2k−4] (n > 1),
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TABLE 1

a0/b0
K at temperature Ts

273 K 283 K 303 K 333 K 343 K 353 K 363 K

0.73 0.947 0.705 0.393 0.163 0.121 0.089 0 .065
0.90 0.980 0.727 0.397 0.158 0.116 0.086 0 .062

TABLE 2

a0/b0
K

Ts = 283 K Ts = 333 K

0.71 0.5822 0.1451
0.75 0.7076 0.1614
0.80 0.7137 0.1594
0.85 0.7201 0.1585
0.90 0.7266 0.1581
0.95 0.7332 0.1582
0.99 0.7386 0.1585

∆n+2 =
1

n+ 2
[γ0∆n+1 − n∆n] (n > 0),

Ck =
∑

l1+3l3+5l5+...+sls=k

l!
l1!l3!l5! · · · ls!

Fliqf
l1
1 f

l3
3 f

l5
5 · · · f lss , C0 = 1, s = k − 1 + (−1)k

2
,

l = l1 + l3 + l5 + . . .+ ls, f2k−1 = (−1)k−1 γ

c(2k − 1)
(k > 1), nx =

[n+ x

2

]
.

In particular, C1 = F1γ/c, C2 = F2γ
2/c2, C3 = F3γ

3/c3 −F1γ/(3c), and C4 = F4γ
4/c4 − 2F2γ

2/(3c2). The integer
part of the number k/2 is denoted by [k/2].

The integration constants A1 and A2 are obtained from the boundary conditions on the spheroid surface

A1 = −c2 GI
2

G1GI
2 −G2GI

1

, A2 = c2
GI

1

G1GI
2 −G2GI

1

, (2.3)

where GI
1 = dG1/dλ and GI

2 = dG2/dλ are the first derivatives of the corresponding functions with respect to λ.
Integrating expressions (1.9) over the spheroid surface and taking into account (2.2), we obtain the force

acting on the spheroid due to viscous stress:

F z = −4π
µ∞U∞
c

A2 exp
(
− Aγ

c
arccot λ0

)
nz, (2.4)

where nz is a unit vector along the z axis.
Expression (2.4) is obtained under the assumption of uniform particle motion, which is possible only when

the total force acting on the particle is zero. Since the force (2.4) is proportional to the velocity and becomes zero
together with it, uniform motion of a heated oblate spheroid occurs only in the presence of a certain external force
that balances force (2.4), e.g., an electromagnetic force.

Allowing for (2.3), expression (2.4) can be written as

F z = 6πa0µ∞KU∞nz, (2.5)

where K = [2GI
1/(3

√
1 + λ2

0[G2G
I
1 −G1G

I
2])] exp (−(Aγ/c) arccot λ0). In the expressions for G1, G2, GI

1, and GI
2,

λ = λ0. To find the expression for the hydrodynamical resistance of an oblate spheroid, in (2.5) we must replace λ
by iλ and c by −ic (i is imaginary unity).

Formula (2.5) has a general nature and describes the hydrodynamic force acting on a highly heat-conducting
spheroidal particle with internal heat sources (sinks) and arbitrary temperature dependence of viscosity.

The influence of the particle form factor and its surface temperature on the resistance force is determined
by the coefficient K. Tables 1and 2 give results of numerical calculation of the coefficient K with variation in the
average temperature of the spheroid surface and the ratio of semiaxes for solid particles suspended in water at
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T∞ = 273 K (A = 5.779 and Fn = 0, where n > 1). An analysis of the numerical results shows that the heating of
the spheroid surface significantly affects the resistance force.

For γ → 0 (small temperature gradients in the vicinity of the spheroid), G1 = 1/(3λ3), GI
1 = −1/λ4,

G2 = 1/λ, GI
2 = −1/λ2, a0 = b0 = R, and K = 1; formula (2.5) becomes the Stokes formula for a rigid spherical

particle with radius R [11].
We now consider the motion of a uniformly heated spheroidal particle with average surface temperature Ts.

This problem can be solved using the results obtained above. In particular, if an electromagnetic radiation flux
with intensity I0 and wavelength λ̃0 is incident on the spheroid, the energy absorbed by the particle is πR2I0Kn

(R is the major semiaxis of the spheroid and Kn is the absorption coefficient) [12]. Let us assume that λ̃0 � R.
Then, the absorbed energy is uniformly distributed over the particle surface, i.e., it can be considered uniformly
heated. In this case, we must set qp = 0 and assume Tliq = Ts in boundary conditions (1.6). The parameter γ,
which characterizes the relative temperature gradient between the particle surface and the region away from it, has
the form γ = c(ts − 1)/ arccot λ0, where ts = Ts/T∞.

Thus, we obtained a formula for the resistance force of a spheroidal particle with arbitrary temperature gra-
dients in its vicinity taking into account the temperature dependence of the viscosity represented as an exponential
series.
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